Notes:

      MAT129 Fall 2024 Notes

Monday  November 18	Topics:	Using, Solving, and Verifying Trigonometric Identities
9.1 - pg 696, Learning Objectives
* Verify the fundamental trigonometric identities.
Fundamental Identities
Oscar, Unit Circle on 10.30.d.gif
Cofunction identities
The function of an angle is equal to the cofunction of its complement.
complement on 10.28.a.gif
complement, supplement gsp   -- just complementary & supplementary angles
Even-odd Identities
picture the graphs of the functions on 11.04.c.gif
sine and tangent are odd so: f(-x) = - f(x)
cosine is even so: f(-x) = f(x)
Reciprocal Identities 11.04.d.gif
Quotient Identities
tan(A) = sin(A) / cos(A)
cot(A) = cos(A) / sin(A)
oscar
similar figures
Pythagorean Identities Pythagorean Trig Identities
sine-cosine, sin2(A) + cos2(A) = 1     pyth1.gif
tangent-secant, tan2(A) + 1 = sec2(A)     pyth2.gif
cotangent-cosecant, cot2(A) + 1 = csc2(A)     pyth3.gif
Unit Circle and Identities
unitSinCosTriangle gsp   -- sine & cosine functions with a unit circle
unitTanSec gsp   -- tangent & secant functions with a unit circle
unitCotCsc gsp   -- cotangent & cosecant functions with a unit circle
unitfx gsp   -- 6 functions with a unit circle
Pythagorean gsp   -- using only figure to adjust angle
PythagorIdentities gsp   -- using either figure or parameter theta to adjust angle
 
More to Come on Another Day
Sum and Difference Identities
Double-Angle Formulas
Half-Angle formulas
Reduction Formulas
Product-to-Sum Formulas
Sum-to-Product Formulas
 
* Simplify trigonometric expressions using algebra and the identities.
[MC,i. Home, site home page] calc1 [Words] spread sheet notes asquared at MCC [Essays] Classes [Table]© 11/17/2024, A2
http://www.mathnstuff.com/math/precalc/129/M.11.18.htm