Arc Functions

Through Auditory, Symbolic, Visual, and Kinesthetic Modalities

Abstract

The fact that you are reading this text is evidence that you are probalby very proficient in the traditional modalities: auditory and symbolic, perhaps even the visual. Now enrich/extend your options. Consider arc functions in all the modalities of the 21 st century: auditory, symbolic, visual, and kinesthetic. All material is free and downloadable.

The Languages of the Math Classroom

© '98, '08, '09 Agnes Azzolino

MOTHER TONGUE \& OTHER TONGUE(S)
\longleftarrow Most Sophisticated and also the Most Basic \longrightarrow

MOSTLY MATH TONGUES
 \longleftarrow Most Sophisticated, Most Basic \longrightarrow

WRITTEN / Symbolic

written word
written symbol
semisymbolic
calculator symbol

PICTORIAL / Visual
DIGITAL MANIPULATIVE moving picture static picture numeral graph nonverbal body language

VERBAL / Auditory

formal spoken mathematics informal spoken mathematics spoken symbol
symbol speak calculatoreze/computereze web speak

CONCRETE / Kinesthetic object
model DIGITAL MANIPULATIVE

Suggestions

- Choose a modality first.

VERBAL / Auditory WRITTEN / Symbolic PICTORIAL / Visual CONCRETE / Kinesthetic

- Usually, introduce in the most concrete.
- Summarize in the most abstract.
- The Mother Tongue is both the most concrete \& the most abstract.
- Sometimes use multiple modalities at the same time.
- Strive for comfort in all modalities, not just your favorite.
- Repeatition improves retention, especially in different modalities.
- Need a review before new material?

Don't review with a COMPUTATION OF SYMBOLS, review with a PICTURE OF THE COMPUTATION.

Arithmetic Stuff:

- Inverse Math Spoken Here! dictionary definition
- arc Math Spoken Here! dictionary definition

Precalc Stuff:

- inverse.gsp, described \& linked below
- 3 Problems \& Answers set up to first take an inverse graphically then room for algebraically
- Notes on Inverse Functions including taking in inerse function verbally
- Arc and arc functions in the trig topics

Calc Stuff:

- m131Dinverse.pdf Warm-Up on Notes on Taking the derivative of an Inverse function, and answers
- Inverse Functions \& Their Derivatives \& Antiderivatives
- absement.gsp, described \& linked below
-- absity, absement, displacement, velocity, acceleration, jolt, jounce, ...
-- derivatives \& antiderivatives of displacement

MATYCNJ23.pdf - of this page

Dowload inverse.gsp - Sketchpad of inverse functions

0 - vertical, horizontal line tests	$5-$ arcsine
1 - square root fx	$6-$ arctangent
2 - any function	$7-\mathrm{f}$ and inverse
3 - sqrt fx by parameters	$8-\mathrm{f}$, inverse, tangents
4 - restricted domain on inverse	

Dowload absement.gsp
0 - toc 8 - PARTITION \& SUMS 4 boxes
1 - time, t
2 - displacement, distance, $\mathrm{s}(\mathrm{t})$
3 - definition of derivative
4-s(t), $\mathrm{s}^{\prime}(\mathrm{t})$
$5-\mathrm{s}(\mathrm{t}), \mathrm{s}^{\prime}(\mathrm{t}), \mathrm{s}^{\prime \prime}(\mathrm{t})$
6 - emojis, $\mathrm{f}^{\prime} \mathrm{f}^{\prime}, \mathrm{f}^{\prime \prime}$, tangent line 14 -arcsine actual fx graphed
7 - trace derivatives $\quad 15-\operatorname{arcsine}$ mesh $-\operatorname{useF}(\mathrm{x})$ plot to plot arcsine

