Polynomial Functions

$$\mathsf{a_n} \mathsf{x}^{\mathsf{n}} + \mathsf{a_{\mathsf{n-1}}} \mathsf{x}^{\mathsf{n-1}} + \mathsf{a_{\mathsf{n-2}}} \mathsf{x}^{\mathsf{n-2}} + \dots + \mathsf{a_2} \mathsf{x}^2 + \mathsf{a_1} \mathsf{x}^1 + \mathsf{a_0} \mathsf{x}^0$$

Rational Functions

$$\mathsf{a_n} \mathsf{x}^{\mathsf{n}} + \mathsf{a_{\mathsf{n-1}}} \mathsf{x}^{\mathsf{n-1}} + \mathsf{a_{\mathsf{n-2}}} \mathsf{x}^{\mathsf{n-2}} + \dots + \mathsf{a_2} \mathsf{x}^2 + \mathsf{a_1} \mathsf{x}^1 + \mathsf{a_0} \mathsf{x}^0$$

$$b_n x^n + b_{n-1} x^{n-1} + b_{n-2} x^{n-2} + ... + b_2 x^2 + b_1 x^1 + b_0 x^0$$

© 8/2019, 9/2022, A. (A²) Azzolino www.mathnstuff.com/math/precalc/pnotes3.htm

Odd powers start low, end high. Even powers start and end high Negative coefficient flips curve over a horizontal line.

To sketch a polynomial function:

- · Note the degree of the polynomial
 - -- use it to predict the general shape and end behavior.
 - -- even functions "start high & end high"
 - -- odd functions "start low & end high"

- · Note the coefficient of the term with highest degree
 - -- use it to determine if the curve is reflected about the x-axis.

x3 "starts low and ends high"

(generally increases as x increases)

 x³ "starts high and ends low" (generally decreases as x increases)

· Rewrite it by factoring

identify the linear, quadratic, or other factors.

- · Plot the real zeros.
- · Note for each root or zero what kind of a root it is
 - -- odd powers pass through the x-axis,
 - -- even powers touch but do not pass through the x-axis.

- · Plot (0, f(0)), the y-intercept.
- · Solve: first derivative = 0
 - -- to find relative maximums/minimums.
- Determine sign in intervals
 - -- using the positiveness or negativeness of each factor.
 - -- just "connect the dots."
- · Sketch curve.

Rational Zero Theorem --

The <u>rational number</u>, fraction, p/q is a root of the polynomial f(x) if and only if p is a factor of the constant term and q is a factor of the leading coefficient. Examples.

Solve:	Solution(s):	p's, factors of constant term	q's, factors of leading coefficien	
3x + 4 = 0	x = -4/3	± 1, ±2, ±4	±1, ±3	± 1/1, ±2/1, ±4/1, ± 1/3, ±2/3, ±4/3
4x - 3 = 0	x = -3/4	± 1, ±3	±1, ±2, ±4	± 1/1, ±3/1, ± 1/2, ±3/2, ± 1/4, ±3/4
x + 3 = 0	x = -3	± 1, ±3	±1	± 1/1, ±3/1
(x + 2)(x - 5) = 0 $x^2 - 3x - 10 = 0$	x = -2, x= 5	± 1, ±2, ±5	±1	± 1, ±2, ±5
$x^3 + 5x^2 + 2x - 8 = 0 x = ?$ ± 1, ±2, ±4		± 1, ±2, ± 4, ±8	±1	± 1, ±2, ± 4, ±8

© 2/22/2004, www.mathnstuff.com/math/spoken/here/2class/300/fx/polyn.htm

Rational (Fraction) Function Features and How To Find Them

- rector the top, write root as (a,0)
- vertical asymptotes factor the bottom, write asymptote as x=a
- discontinuties, "holes"
 cancel common factor in top & bottom,
 find x≢ a, find (a,f(a))
- horizontal asymptotes complete long division, use remainder
- other asymptotes complete long division, use remainder
- end behaviors as $x \to +\infty$, $f(x) \to think$ as $x \to -\infty$, $f(x) \to -\infty$.
- other features point-plot in intervals between the zeros and vertical asymptotes (c) 2018 A²

End Behavior of Rational Functions

is Based on Which is More POWERful.
the top function, Axm + ..., or
the bottom function. Bxn + ...

Examine the exponents of the leading terms—m>n m=n m<n
Examine the coefficients of the leading terms,

$$f(x) = \frac{Ax^m + ...}{Bx^n + ...}$$

