In Exercises 11 – 14, a graph of a function f(x) is given; the numbers inside the shaded regions give the area of that region. Evaluate the definite integrals using this area information.

(a)
$$\int_0^1 f(x) dx$$
 (c) $\int_0^3 f(x) dx$
(b) $\int_0^2 f(x) dx$ (d) $\int_1^2 -3f(x) dx$

(b)
$$\int_0^2 f(x) \ dx$$

(c)
$$\int_0^3 f(x) \ dx$$

d)
$$\int_{1}^{2} -3f(x) \ dx$$

In Exercises 9 - 27, evaluate the given indefinite integral.

$$16. \int \frac{1}{\sqrt{x}} dx$$

20.
$$\int 5e^{\theta} d\theta$$

$$26. \int e^{\pi} dx$$

In Exercises 29 – 39, find f(x) described by the given initial value problem.

29.
$$f'(x) = \sin x$$
 and $f(0) = 2$

T4m131.pb.set.fa22 **D.**gif 5.4, pg. 246 # 55, 56 5.3, pg. 234 # 6, 26

In Exercises 55 – 58, find F'(x).

55.
$$F(x) = \int_{2}^{x^3+x} \frac{1}{t} dt$$

© 2022 A. Azzolino

56.
$$F(x) = \int_{x^3}^{0} t^3 dt$$

5.3, pg. 234 # 6, 26

In Exercises 5 – 12, write out each term of the summation and compute the sum.

6.
$$\sum_{i=-1}^{3} (4i - 2)$$

Theorem 5.3.1 states

$$\sum_{i=1}^{n} a_i = \sum_{i=1}^{k} a_i + \sum_{i=k+1}^{n} a_i$$
, so

$$\sum_{i=k+1}^{n} a_{i} = \sum_{i=1}^{n} a_{i} - \sum_{i=1}^{k} a_{i}.$$

Use this fact, along with other parts of Theorem 5.3.1, to evaluate the summations given in Exercises 25 - 28.

26.
$$\sum_{i=16}^{25} i^3$$

T4m131.pb.set.fa22C,gif

5.4, pg. 246 # 6, 20, 22, 29, 42, 55, 56 In Exercises 5 – 28, evaluate the definite integral.

6.
$$\int_0^4 (x-1)^2 dx$$

20.
$$\int_{1}^{2} \frac{1}{x^3} dx$$

22.
$$\int_0^1 x^2 dx$$

29. Explain why:

- (a) $\int_{-1}^{1} x^n dx = 0$, when n is a positive, odd integer
- (b) $\int_{-1}^{1} x^{n} dx = 2 \int_{0}^{1} x^{n} dx$ when n is a positive, even integer.

In Exercises 41-46, a velocity function of an object moving along a straight line is given. Find the displacement of the object over the given time interval.

42.
$$v(t) = -32t + 200$$
ft/s on $[0, 10]$

280 In Exercises 15 – 24, use Substitution to evaluate the indefinite integral

16.
$$\int \cos^3(x) \sin(x) dx$$

Extra. Approximate using a Reimann boxes/Reimann Sums method as shown in class notes.

7.1, pg 360 ^{24.}

In Exercises 21 – 26, find the area of the enclosed region in two ways:

- 1. by treating the boundaries as functions of x, and
- 2. by treating the boundaries as functions of y.

